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SUMMARY

Reduced-Order Models (ROMs) have been the focus of research in various engineering situations, but
it is only relatively recently that such techniques have begun to be introduced into the CFD �eld. The
purpose of generating such models is to capture the dominant dynamics of the full set of CFD equations,
but at much lower cost. One method that has been successfully implemented in the �eld of �uid �ows is
based on the calculation of the linear pulse responses of the CFD scheme coupled with an Eigensystem
Realization algorithm (ERA), resulting in a compact aerodynamic model. The key to the models is the
identi�cation of the linear responses of the non-linear CFD code. Two di�erent methods have been
developed and reported in literature for linear response identi�cation; the �rst method linearizes the
CFD code and the second method uses Volterra theory and the non-linear code. As these methods were
developed independently they have not previously been brought together and compared. This paper �rst
explains the subtle, but fundamental di�erences between the two methods. In addition, a series of test
cases are shown to demonstrate the performance and drawbacks of the ROMs derived from the di�erent
linear responses. The conclusions of this study provide useful guidance for the implementation of either
of the two approaches to obtain the linear responses of an existing CFD code. Copyright ? 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Accurate modelling of the �uid motion about aerofoils and wings is computationally
expensive for unsteady problems, particularly in the �elds of aeroelastics and aeroservoelas-
tics. This is because the full non-linear Euler or Navier–Stokes equations have many degrees
of freedom for typical con�gurations (see for example References [1–5]) and are therefore
inpractical when many parameter variations need to be investigated, such as during �utter
boundary prediction. More recently, research has been directed towards the application of
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system reduction methods, developed in other �elds of engineering, to �uid modelling. The
objective of a reduced-order model (ROM) is to identify from the full system of equations a
lower cost model that still captures the dominant behaviour. While many reduction methods
can be directly applied to the matrices of the large time-continuous linear system of equa-
tions (e.g. eigensystem realization algorithm (ERA) (modi�ed Ho algorithm) [6, 7], POD [8],
Krylov-subspace [9], Arnoldi [10, 11]), in �uid dynamics, it has been more common to create
ROMs in the discrete frequency or discrete time domain using methods that do not require ex-
plicit construction of the system matrices. This is because in general for many computational
�uid dynamics (CFD) codes, neither the continuous nor the discrete system matrices are ever
explicitly constructed. Instead, the CFD code solves an approximation to the continuous time
set of equations (obtained after spatial discretization) in either the discrete frequency domain
[12–15] or the discrete time domain [16–18], and thus discrete frequency or discrete time
ROMs are initially obtained. For an extensive review of �uid motion modelling from classical
methods through to recent developments, see Reference [19].
This paper focuses on the construction of a ROM of a CFD code that is solved in the

discrete time domain. A ROM can be constructed by assuming the �ow can be represented
as the sum of a statically non-linear base �ow and a dynamically linear perturbation. Depend-
ing on the choice of steady base �ow model, it may be possible to include many physical
phenomena for example shock waves, 3D vorticity and separated �ows. However due to the
assumption of a small dynamic perturbation, any dynamic changes to these features must be
small. The assumption of dynamic linearity is a common approach used in the development
of ROMs and it is a good approximation in many situations e.g. �utter calculations. Making
this assumption the full non-linear system is replaced by a linear time-dependent system that
can be written in state-space form. If the dynamically linear pulse responses of the linear
system can be calculated, then ERA, a standard system identi�cation algorithm developed in
the �eld of system dynamics, can be used to �nd a lower-order linear state-space model of
the time-dependent system.
In the literature, two methods to obtain the required linear responses of the CFD code have

been independently described. There are subtle, but fundamental di�erences between these two
methods. In the �rst approach the linear responses can be found directly by time-linearizing
the CFD code [20, 21] and performing a series of calculations for pulse inputs [22]. The
system of equations solved is the actual dynamically linear version of the full CFD code.
In the second approach, each linear pulse response is approximated as the linear portion of
the non-linear response of the full non-linear code; this approach has been used by Silva
[17]. In this case the non-linearity of the �ow is assumed to have a particular form. This
yields a formula for the linear portion of the non-linear response and requires twice as many
pulse response calculations to be performed; the need to linearize the CFD code is, however,
avoided. The application of both approaches to the same �uid problem has not previously
been reported, and is considered in detail here.
This paper considers the issues involved in the implementation of both methods for linear

response identi�cation and explores the subsequent impact on the behaviour of the solutions
of the ROMs produced. To enable comparisons between the methods, the individual steps in
the formation of the ROM are considered separately so areas of di�erence can be highlighted.
Although a speci�c �ow solver has been used the conclusions should be general. The CFD
code used, as the basis of this work, is a modi�ed Jameson cell-centre CFD scheme that solves
the full unsteady non-linear Euler equations on a moving mesh. Spatial discretization yields
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a set of continuous time non-linear di�erential equations. The code solves these equations
in the discrete time domain using a dual-time approach. The test case chosen is sinusoidal
pitching for a range of frequencies; two Mach numbers are selected to illustrate �ows with
and without shockwaves. This test case was chosen as it will show the frequency range that
has been captured by the ROMs.

2. 2D EULER EQUATIONS ON A MOVING GRID

The 2D unsteady Euler equations in non-dimensional integral form on a moving mesh are

d
dt

∫∫
�
W dx dy +

∫
@�
(F dy −G dx)=0 (1)

where

W=[�; �u; �v; Et]T

F=[�(u− xt); �u(u− xt) + p; �v(u− xt); Et(u− xt) + pu]
G=[�(v− yt); �u(v− yt); �v(v− yt) + p;Et(v− yt) + pv]

(2)

where Xt =[xt ; yt]T is the mesh speed and Et =�e + �(v2 + u2) is the total energy. In this
study, the non-linear unsteady equation (1) is solved using a version of Jameson’s cell-centred
approach that is extended to be time accurate and account for mesh motion.
Equation (1) is applied to the ijth cell giving the following non-linear system:

d(WijVij)
dt

+
4∑
k=1

{Fk�yk −Gk�xk}ij −Dij=0 (3)

where Wij is the cell average value of W̃, Vij is the cell volume and Dij is numerical
dissipation. These non-linear time-continuous equations are actually solved in discrete-time
form via a dual-time scheme [4, 5], together with a geometric conservation law (GCL) to
account for the moving mesh [23, 24].

3. IDENTIFYING LINEAR RESPONSES FOR ROMs

3.1. Linear state-space models

The above CFD equations (3) together with an output equation can be represented in the
following multi-input multi-output (MIMO) system form

ẋ(t)=f(x(t); u(t))

y(t)=g(x(t); u(t))
(4)

where u is the input vector and x is the state-vector. The vector y is the output and is chosen
to produce the required information about the system.
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Consider as an example the application of these equations to calculations of the �ow about
aerofoils with trailing edge �aps that can undergo linearized pitch motions [21], then

u=[�; �; �̇; �̇]T (5)

where � is the pitch angle and � is the �ap angle.
An example of a suitable y for coupling with a simple structural model for this motion is

y=[Ĉl; Ĉm; Ĉh]T (6)

where Ĉl, Ĉm and Ĉh are the changes in the lift, pitching moment and hinge moment coe�-
cients from their mean values.
If the dynamic behaviour of the system is assumed to be approximately linear, then the

non-linear system (4) can be replaced by a linear time-continuous state-space system

ẋ(t)=Ax(t) + Bu(t)

y(t)=Cx(t) +Du(t)
(7)

where A;B;C and D are the system matrices.
It is assumed that the method used to put this linear system into discrete-time form is the

same as for the non-linear equations. Thus approximating equation (7) at time k�t

ẋ(k�t)=Ax(k�t) + Bu(k�t)

y(k�t)=Cx(k�t) +Du(k�t)
(8)

and using a backward di�erence for the time derivative leads to a discrete-time MIMO state-
space model of the following form:

x̃k = Ãx̃k−1 + B̃ũk

ỹk = C̃x̃k + D̃ũk
(9)

where subscript k indicates the time k�t and the discrete system matrices are given by

Ã=(I −A�t)−1

B̃=(I −A�t)−1B�t
C̃=C

D̃=D

(10)

The identi�cation and reduction of the discrete linear system matrices will lead to a discrete-
time ROM. A continuous-time ROM of the CFD equations can then be obtained via an inverse
transformation [22, 25]. The process starts by �nding the linear pulse responses of the CFD
scheme. Two methods are considered to extract these responses: the �rst method linearizes
the CFD code, which allows the direct identi�cation of the system matrices and the linear
responses; the second method approximates the linear responses as the linear portion of the
non-linear responses of the CFD code.
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3.2. Method 1—dynamically linear Euler equations

The Euler equations (3) are non-linear and unsteady. In many cases, the unsteadiness in the
�ow is small. It is then possible to approximate the �ow as the sum of a mean or steady
�ow component and a small-disturbance unsteady component. So if A is an unsteady quantity
then it is approximated by

A(x; y; t)=A(x; y) + Â(x; y; t) (11)

Substitutions of this form are made for �; u; v; p; x; y; V and D. It is assumed that all perturba-
tions and grid speeds can be considered small and the steady solution satis�es Equation (3).
Thus only �rst-order small terms need to be retained and a dynamically linear approxima-
tion to the non-linear CFD equations is obtained (see Reference [20] for more details of the
derivation). If q=[�; u; v; p]T then the resulting time-continuous equations can be written as

dq̂ij
dt

+
1
V ij
(B1)−1ij R

1
ij +

1
V ij
(B1)−1ij S

1
ij=0 (12)

where (B1)−1 = @q=@W and

R1ij=
4∑
k=1

{B2Sk �yk − B3Sk �xk}q̂k − D̂ij

S1ij=Wij
dV̂ ij
dt

+
4∑
k=1

{Fk�ŷk −Gk�x̂k} −
4∑
k=1
Wk{xtk�yk − ytk�xk}

(13)

Matrices B2S and B3S are given by

B2S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u � 0 0

u2 2�u 0 1

vu �v �u 0

1
2
(u2 + v2)u (�e+ p) + �u2 �vu

�u
�− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(14)

B3S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v 0 � 0

uv �v �u 0

v2 0 2�v 1

1
2
(u2 + v2)v �uv (�e+ p) + �v2

�v
�− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

Note that the dissipation Dij is of the standard Jameson form [26]. This contains a switch that
turns on second-order dissipation near shocks. This cannot be linearized. In order to obtain
a truely linear dissipation, a switch based on the mean switch value is used. The correct
dissipation will not be obtained if the mesh or shock move too far. However, for small
perturbations this assumption is reasonable, see Reference [20] for further discussion.
Equation (12) is in linear form and if the output equation is also linearized, the time-

continuous linear system (7) approximating the full non-linear system is available in analytic
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form. Note however that in the current implementation, it is not necessary to explicitly con-
struct the system matrices. The ERA scheme does not require this information to produce
ROMs. A dual-time scheme identical to that used in the non-linear CFD code is imple-
mented, together with a linearized version of the GCL, to solve the system in discrete-time
space. To complete the process, all the boundary conditions applied within the non-linear
CFD code are linearized [20]. The linear responses of the CFD scheme in discrete-time form
are then directly available as the outputs of the dynamically linear CFD code for pulses on
each of the system inputs in turn. These can be used to �nd a discrete-time ROM and also
a corresponding continuous-time ROM [25].

3.3. Method 2—extraction of the linear portion of the non-linear response of the CFD code

An alternative approach based on Volterra theory is available that allows the linear responses
of the system to be approximately identi�ed directly from the non-linear CFD code. The
basic premise of Volterra theory (which is discussed extensively by Silva [17]) is that any
non-linear time-continuous system such as the CFD equations (3) can be modelled as an
in�nite sum of multi-dimensional convolution integrals, of increasing order, involving system
kernels. If the equations are put into discrete-time form, then the integrals are replaced by
summations. In both continuous and discrete-time space, only the �rst two terms of the series
involving the zeroth order kernel, h0 (steady term), and the �rst-order kernel, h1 (the linear
pulse response), are non-zero for linear systems. For ‘weakly non-linear’ systems, the solution
can be represented by a truncated Volterra series for small inputs. If the system may be
approximated by a second-order Volterra series, then the �rst-order kernel of the system, h1
can be found from

h1 = 2y1 − 1
2y11 (16)

where the notation used is that of Silva [17]. y1 represents the response of the non-linear
system to a pulse input and y11 represents the response to a pulse of twice the amplitude.
For a non-linear system, h1 captures some level of the amplitude dependence [17] and is
therefore in general di�erent from the purely linear pulse response. However if the non-linear
system exhibits approximately linear behaviour to small inputs, then it can be assumed that
the non-linear �rst-order kernel is that of an approximating linear system (7). Thus the linear
responses can be found from two responses of the non-linear code.

4. SYSTEM REDUCTION

To simplify the process of obtaining a ROM of the discrete-time system (9), the system
output is modi�ed. The matrices D and thus D̃ will be known (as the output equation is user
speci�ed), so both the continuous system and the discrete approximation de�ne a modi�ed
output by subtracting the term Du(t) from the continuous output and the term D̃ũ from the
discrete output equation. The modi�ed discrete system is then

x̃k = Ãx̃k−1 + B̃ũk

ỹmk = ỹk − D̃ũk = C̃x̃k
(17)
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Then if x̃−1 = 0, it follows from (17) that

ỹml =[Hl;Hl−1; : : : ;H2;H1;H0]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũ0

ũ1
...

ũl−2

ũl−1

ũl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

where the sequence Hk ; k=0;∞ is given by

{H0;H1;H2; : : : ;Hk ; : : :}= {C̃B̃; C̃ÃB̃; : : : ; C̃ÃkB̃; : : :} (19)

and is called the Markov sequence, the weighting sequence or the impulse-response sequence
of the discrete system. The forced response of the discrete system is uniquely determined by
its Markov sequence and the input. Thus any two systems with identical Markov sequences
have identical forced responses for the same input. Note that for a system of rank n the
sequence Hk ; k=0; 2n de�nes the forced response exactly.
The system realization method described by Juang and Pappa [6] relies on being able to

construct the generalized Hankel matrix whose entries are terms of the form

C̃ÃkB̃ (20)

for k¿0. Now these terms are equal to the terms of the Markov sequence Hk . Each matrix
Hk is composed of columns, which are the outputs for a unit sample pulse input on each
input separately, i.e. the ith column is the output vector at time k for a unit sample input
in the ith component of ũ, with all other entries of ũ set to zero, see Reference [27]. This
amounts to setting ũ0 = I and all the other input matrices ũk to null matrices.
The Hankel matrix in this case is the r× s block matrix given by

Hrs(k)=

⎡
⎢⎢⎢⎢⎢⎢⎣

Hk Hk+1 Hk+2 : : : Hk+s−1

Hk+1 Hk+2 Hk+3 : : : Hk+s

...
...

...
...

Hk+r−1 Hk+r Hk+r+1 : : : Hk+s+r−2

⎤
⎥⎥⎥⎥⎥⎥⎦

(21)

This matrix can be used to realize and reduce the system matrices via ERA [6].
If there are p outputs and m inputs to the system then each of the Markov parameters

is of size p×m. Thus the size of the Hankel matrix is rp× sm. Then the singular-value
decomposition (SVD) for k=0 is given by

Hrs(0)=UWV
T (22)

where W is an sm× sm diagonal matrix whose diagonal entries are called singular values
which are either positive or zero, U is rp× sm and V is a sm× sm matrix. The elements of
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W are arranged in size order i.e. [w(1; 1)¿w(2; 2)¿w(3; 3) · · ·]. The rank of the ROM of
the system is then determined by the number of elements of W which are larger than some
desired accuracy or by taking into account only the n largest singular values in W. Then
matrix Hrs(0) can be approximated as

Hrs(0)=P�QT (23)

where the matrices U;W;V have been reduced in size by deleting unnecessary columns and
rows as appropriate. The reduced matrix from U is P : rp× n, the reduced matrix from W is
� : n× n and the reduced matrix from V is Q : sm× n.
It is then possible to show [6] that a realization is

Ã=�−1=2PTHrs(1)Q�
−1=2

B̃=�1=2QTEm

C̃=ETpP�
1=2

(24)

where ETp=[Ip; 0p; 0p; : : : ; 0p] has size p× rp and ETm=[Im; 0m; 0m; : : : ; 0m] has size m× sm.
Note that the triple [Ã; B̃; C̃] is not unique and that for any non-singular matrix T the triple
[TÃT−1;TB̃; C̃T−1] is also a realization.
The above scheme is used to get a discrete-time ROM of the CFD code. However in

discrete form, the model is restricted to problems with a �xed time step, which means
that the discrete ROM cannot be accurately applied to structural models with discrete non-
linearities (such as freeplay in a control surface) since any aerodynamic model must cap-
ture the ‘switching’ points between discrete regions [28] or unphysical limit cycle behaviour
may be introduced into the solution [29]. A time continuous ROM does not have this
restriction.
The simplest method to obtain a continuous-time ROM is to invert the transformation used

to get from the continuous to the discrete system (10) before system reduction. This is applied
to the reduced system matrices and leads to a ROM of the continuous-time system [25].

5. TEST CASE INPUT CHANNELS

The methods described above will be applied to the identi�cation of a continuous ROM for
the �ow about an aerofoil with trailing edge �aps that can undergo linearized pitch motions.
For this motion, the position of a point on the aerofoil surface at any time is

x(t)= x +�x(t)

y(t)=y +�y(t)
(25)

where x; y are the mean steady position of the point on the aerofoil surface and �x;�y are
the displacements of the point at time t. The displacements are given by

�x=(y − bc)�amp(t) + S(hx)(y − hy)�(t)
�y=−(x − ac)�amp(t)− S(hx)(x − hx)�(t)

(26)
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Table I. Channel inputs to the linearized Euler equations for linearized pitch and
linearized �ap motions.

Channel 1 Channel 2 Channel 3 Channel 4 All channels
� � �̇ �̇ �; �; �̇; �̇

t= k�t t= k�t t= k�t t= k�t t �= k�t
�x (y − bc)c1 (y − hy)c2 0. 0. 0.
�y −(x − ac)c1 −(x − hx)c2 0. 0. 0.
xt 0. 0. (y − bc)c3 (y − hy)c4 0.
yt 0. 0. −(x − ac)c3 −(x − hx)c4 0.

�x;�y are displacements and xt ; yt are grid speeds of a point on the aerofoil.

and the grid speed of the point on the aerofoil surface xt ; yt are given by

ẋ=(y − bc)�̇amp(t) + S(hx)(y − hy) ˙�(t)

ẏ=−(x − ac)�̇amp(t)− S(hx)(x − hx) ˙�(t)
(27)

where (hx; hy) is the hinge location and

S(hx)=0 x¡hx

S(hx)=1 x¿hx

There are four associated input channels for this �ow. The pulse inputs are given in Table I
where c1; : : : ; c4 are scaling constants used to avoid divergence of the numerical scheme.

6. RESULTS

The test cases shown here are for a NACA 0012 aerofoil. The grid used for the calculations is
of size 191× 36, this means that the number of unknowns is 26 600 (ncells× 4 solution quan-
tities). A steady calculation is performed for the aerofoil at incidence �=0◦. The steady �ow
pressure distributions at freestream Mach numbers M =0:7 and 0.80 are shown in Figure 1.
These Mach numbers have been selected to illustrate �ows without and with shockwaves.
ROMs are generated using ERA for each Mach number. The pulse responses are calculated

using the two methods described above. The aim of this paper is to compare these methods
for linear response identi�cation and the subsequent impact on the ROMs produced by ERA.
To enable this comparison, the individual steps in the formation of the ROM are considered
separately, so that areas of di�erence can be highlighted; these steps are the linear response
calculation, the SVD of the Hankel matrix and the eigenvalues of the ROMs. Finally, forced
sinusoidal linear pitching motions are compared to show the overall properties of the ROMs
for a range of time steps.

6.1. Linear responses

The procedure to generate continuous ROMs starts with the calculation of the linear responses
of the CFD scheme for each input. The non-dimensional time step used in the calculations
is �t1.
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Figure 1. Steady pressure distributions, M =0:7; 0:8.

Table II. Channel inputs to the linearized Euler equations for linearized pitch and
linearized �ap motions.

M �t1 c1 c2 c3 c4

0:7 0.2608 �=180 �=180 0:335�=180 0:335�=180
0:8 0.2282 �=180 �=180 0:382�=180 0:382�=180

For the dynamically linear CFD code the time step and the input scaling constants for
the two Mach numbers under consideration are shown in Table II. The pulse responses are
calculated using 150 subiterations per real time step.
For the non-linear code, two sets of pulses are needed to extract an approximation to the

linear response. The extracted linear response will depend on the amplitude of the non-linear
pulses used to calculate it. Therefore non-linear pulse responses corresponding to amplitudes
2c1, c1, c1=2, c1=4 and c1=8 (where c1 is as used for the linear responses) are calculated. This
means linear pulse responses corresponding to c1, c1=2, c1=4 and c1=8 can be extracted. These
can then be rescaled for comparison to the amplitude of the responses of the dynamically
linear code.
To compare the linear responses constructed from the non-linear responses to those from

the dynamically linear code, di�erence terms are used. For example, for the lift perturbation,
the di�erence is given by

Di�Cl =
(Ĉl;2 − Ĉl;1)
max |Ĉl;1|

(28)
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Figure 2. Pulse responses from linearized code, M =0:7: (a) �; (b) �; (c) �̇; and (d) �̇.
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Figure 3. Di�erences in lift perturbation at M =0:7, variable switch: (a) �; (b) �; (c) �̇; and (d) �̇.

where the subscript 1 corresponds to the dynamically linear method and subscript 2 cor-
responds to the pulses constructed using non-linear responses. The maximum value in the
dynamically linear response history is used to normalize the values obtained.
It should be noted that the internal calculations of the non-linear code work on the actual

values of lift, moment and hinge moment. The required outputs y (see Equation (6)) are
calculated by subtraction of the mean values. This means that any rounding error e�ects will
be ampli�ed as the pulse size decreases.

6.1.1. M =0:7. The linear pulse responses calculated using the dynamically linear CFD code
are shown in Figure 2. Figure 3 shows the di�erences in lift perturbation for linear responses
extracted from non-linear responses at di�erent amplitudes. Note that the switch in dissipation
takes its usual variable form and 150 subiterations per real time step are used. It can be seen
that for pulses in �; �̇ and � the initial di�erence dies away quickly. For �̇, the di�erence for
the linear response calculated using pulses of amplitude c1 and 2c1 exhibits large di�erences
for a signi�cant part of the time history. This is a di�erent behaviour to that shown for linear
responses extracted from smaller amplitude non-linear responses.
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Figure 4. Di�erences in lift perturbation at M =0:7, �xed switch: (a) �; (b) �; (c) �̇; and (d) �̇.

The dissipation switch was then �xed at its mean value (like in the dynamically linear
responses) to see how this would e�ect the responses. Figure 4 shows the di�erences in lift
perturbation in this case. The di�erences in � and � show only a very slight change compared
to the variable switch results. For �̇ and �̇, the reduction in the magnitude of the di�erences
is much higher. Also in the case of �̇, the behaviour of the di�erence for the linear response
constructed from the c1 and 2c1 non-linear pulses is similar to that for those from smaller
pulses. This suggests the non-linear pulse corresponding to 2c1 is exhibiting signi�cant non-
linear behaviour due to the variable switch as the shock moves. When the non-linear e�ects of
the variable switch are eliminated from the 2c1 non-linear pulse, the di�erences in the linear
responses for � and �̇ are larger for those calculated from the smallest non-linear pulses than
those using the largest non-linear responses. The magnitude of the forces for the variations in
�ap speed are very small and there is a precision issue, as discussed in Section 6.1. In this
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Figure 5. Di�erences in pitch moment perturbation at M =0:7, variable
switch: (a) �; (b) �; (c) �̇; and (d) �̇.

�gure, the long-term di�erences are proportional to 1=amplitude of the original linear response
calculated. This suggests the rescaling, used to produce amplitude c1 responses, is magnifying
a �xed precision error.
Di�erences in Ĉm and Ĉh are shown in Figures 5–8. The maximum di�erences are small

in all cases. The number of subiterations was doubled to check convergence. This had a
negligible impact on the di�erence levels, so further results are not included here.

6.1.2. M =0:8. The linear pulse responses calculated using the dynamically linear CFD code
are shown in Figure 9. Figures 10 and 11 show the di�erences in lift perturbation for linear
responses extracted from the non-linear responses with variable and �xed switches, respec-
tively. The di�erences take longer to die away in most cases compared to the M =0:7 results,
where the absence of the shock makes the non-linear e�ects less signi�cant.
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Figure 6. Di�erences in pitch moment perturbation at M =0:7, �xed
switch: (a) �; (b) �; (c) �̇; and (d) �̇.

Di�erences in Ĉm and Ĉh are shown in Figures 12–15. The number of subiterations was
doubled to check convergence. Again this had a negligible impact on the di�erence levels
and so further results are not included here.

6.2. Singular values of the Hankel matrix

The �rst step in the use of ERA to �nd a ROM is the construction and SVD of the Hankel
matrix. This yields the singular values of the matrix. As the size of the Hankel matrix is
increased, more singular values can be identi�ed and the values for the larger singular values
converge. This is illustrated for the dynamically linear responses at M =0:7 and 0.8 in Figures
16 and 17, respectively, where singular values for Hankel matrices constructed using 20, 40
and 80 Markov parameters are shown.
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Figure 7. Di�erences in hinge moment perturbation at M =0:7, variable
switch: (a) �; (b) �; (c) �̇; and (d) �̇.

The di�erences between the singular values for the dynamically linear responses and those
extracted from non-linear pulses of various amplitudes for a particular size of Hankel
matrix are shown in Figures 18 and 19 for M =0:7 and 0.8, respectively. For M =0:7,
the largest singular values for Hankel matrices constructed using linear responses extracted
from the non-linear CFD code are close to those constructed using the dynamically lin-
ear code. The smaller singular values of the Hankel matrices constructed using di�erent
amplitude pulses from the non-linear code are all similar, but there is a small di�erence
from those based on the dynamically linear code pulses. For M =0:8, the singular values
show similar behaviour when a �xed switch is used, but greater di�erences are exhibited
when a variable switch is used. The non-linear behaviour in this case is greater because of
the shock.
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Figure 8. Di�erences in hinge moment perturbation at M =0:7, �xed
switch: (a) �; (b) �; (c) �̇; and (d) �̇.

6.3. ROM generation and eigenvalues

Once the SVD of the Hankel matrix is known, ERA can generate a discrete time ROM using
Equation (24). The discrete time ROM is stable when each eigenvalue �dsc of the reduced-
order system matrix Ã satis�es

|�dsc|¡1 (29)

This model is a discrete time ROM of the CFD code for a �xed time-step of �t1. If a
continuous time ROM is required, so that the time-step may be altered, then the inverse of
the transformation given in Equation (10) is used. Note that not all stable discrete models
map to stable continuous models. All the eigenvalues of the continuous system matrix A must
have negative real part for stability. The corresponding eigenvalues of the discrete scheme
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Figure 9. Pulse responses, M =0:8: (a) �; (b) �; (c) �̇; and (d) �̇.
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Figure 10. Di�erences in lift perturbation at M =0:8, variable switch: (a) �; (b) �; (c) �̇; and (d) �̇.

matrix Ã for a stable continuous scheme lie within the smaller circle shown in Figure 20.
The di�erences in the values calculated from the linear responses derived from the smallest
non-linear pulses is a result of the small magnitude of the outputs being more a�ected by
rounding error. These e�ects are magni�ed by the post-processing used to derive the reduced
system matrices.
All the Hankel matrices were constructed using 80 Markov parameters. For M =0:7, ROMs

of rank 18 were constructed. Figures 21 and 22 show the discrete eigenvalues for the dis-
crete ROMs constructed using pulses of varying amplitude from the non-linear code with
variable and �xed switches, respectively. Also included in the plots are the eigenvalues
of the discrete ROM constructed from the dynamically linear code (labelled Lin). In this
case, there is little di�erence between the �xed and variable switch plots, which is to be
expected given the closeness of the singular values. The eigenvalues for models constructed
using di�erent amplitude responses of the non-linear code exhibit small di�erences. For all
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Figure 11. Di�erences in lift perturbation at M =0:8, �xed switch: (a) �; (b) �; (c) �̇; and (d) �̇.

the models, all the eigenvalues are within the circle required to ensure the discrete ROM
maps to a stable continuous ROM. For M =0:8, ROMs of rank 20 were constructed. Figures
23 and 24 show the discrete eigenvalues for the discrete ROMs constructed using pulses of
varying amplitude from the non-linear code with variable and �xed switches, respectively.
In this case, there are large di�erences between the variable and �xed switch plots. The
�xed switch eigenvalues show little variation with pulse amplitude suggesting essentially the
same model has been identi�ed by all the non-linear pulses and the dynamically linear re-
sponses. In contrast, the variable switch eigenvalues vary signi�cantly with amplitude. In
this case, the non-linear e�ects of the shock motion on the switch are signi�cant and di�er-
ent models are being found depending on the pulse amplitudes. For the �xed switch cases,
all the discrete ROMs produced map to stable continuous ROMs. However for the vari-
able switch cases, the discrete ROM produced using the largest amplitude pulses from the
non-linear code is not stable. It was not possible to �nd a discrete ROM of any rank for
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Figure 12. Di�erences in pitch moment perturbation at M =0:8, variable
switch: (a) �; (b) �; (c) �̇; and (d) �̇.

this case that would map to a stable continuous ROM, although stable discrete ROMs can
be found.

6.4. Sinusoidal linear pitch oscillations

The ROMs were then applied to a sinusoidal linear pitch test case. The linear pitch motion
is de�ned in dimensional variables by

�amp(t)= �max sin(!t) (30)

where ! is related to the non-dimensional reduced frequency, kred via

kred =
!c
2U∞

(31)
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Figure 13. Di�erences in pitch moment perturbation at M =0:8, �xed
switch: (a) �; (b) �; (c) �̇; and (d) �̇.

Calculations were performed with �max =0:25◦ at M =0:7; 0:8 for reduced frequencies kred=
0:0404; 0:202; 4:04; 10:1 and 20:2. Each calculation was performed with 72 steps per period. At
these frequencies, the non-dimensional time steps are 5�t1, �t1, �t1=20, �t1=50 and �t1=100,
respectively, where the continuous ROM was created using a pulse width of �t1.
Solutions for the lift perturbation at M =0:7 are shown in Figures 25 and 26. The plots

compare ROM solutions to full non-linear solutions with a variable switch and full linear
solutions. The results for ROMs produced from the non-linear codes with variable and �xed
switches are very close. These results are also similar, for all frequencies, to those from the
dynamically linear code. It can be seen that the long term sinusoidal behaviour is captured
by all models up to k=10:1 which corresponds to a time step of �t1=50. However, the
initial transient shown by the full-order non-linear and full-order linearized Euler solutions
is not captured by the ROMs as frequency increases. The pitch moment and hinge moment
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Figure 14. Di�erences in hinge moment perturbation at M =0:8, variable
switch: (a) �; (b) �; (c) �̇; and (d) �̇.

perturbation results for ROMs from the variable switch non-linear code are shown in Figures
27 and 28, respectively. Like the lift perturbation results, the plots for ROMs for the �xed
switch code exhibit excellent agreement like the lift perturbation results and so are not shown.
The reason that the methods breakdown for the highest frequency is that the current approach
identi�es the dominant eigenvalues of (I − A�t)−1, see Equation (10). This biases the ROM
to model a low-frequency range. Thus as the frequency is increased, a point is reached where
the eigenvalues driving the response have not been captured in the ROM. Even at lower input
frequencies, the initial transients are not well predicted, because they include high-frequency
components that again are not modelled by the ROMs.
Solutions at M =0:8 are shown in Figures 29–34. The results for ROMs produced from

the non-linear codes with variable and �xed switches are very close except for the ROM
constructed from the largest amplitude pulses of the variable switch code, which maps to an
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Figure 15. Di�erences in hinge moment perturbation at M =0:8, �xed
switch: (a) �; (b) �; (c) �̇; and (d) �̇.

unstable continuous ROM. In this case, at the higher frequencies when a time step smaller than
that used to produce the ROM is used, the continuous ROM maps to an unstable discrete
ROM and the solutions become unstable; at the lowest frequency, with a time step larger
than that used to generate the ROM, the solution is stable and in good agreement with the
other solutions. It can be seen that the long-term sinusoidal behaviour is again captured by
all the stable models up to k=10:1 and that the initial transient shown by the full-order
non-linear and full-order linearized Euler solutions is not captured by the ROMs. Note also
that the results from ROMs constructed using the variable switch non-linear pulses show a
small amplitude dependence at the highest frequencies. This is because the non-linear e�ects
in the code make the assumption of weak non-linearity invalid, even for relatively small
motions when a shock is present. This e�ect was not observed at M =0:7 when no shock
was present.
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Figure 18. Singular values for Hankel matrices constructed with pulses from the
dynamically linear code and non-linear code, M =0:7.
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Figure 19. Singular values for Hankel matrices constructed with pulses from the
dynamically linear code and non-linear code, M =0:8.
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Figure 22. Polar diagram of discrete eigenvalue space showing eigenvalues
of rank 18 ROM, M =0:7—�xed switch.
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Figure 23. Polar diagram of discrete eigenvalue space showing eigenvalues
of rank 20 ROM, M =0:8—variable switch.
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7. CONCLUSIONS

This study has compared, in detail, two methods for extracting the linear responses of a
CFD code for the construction of ROMs via ERA, and has provided extremely valuable
insight into the characteristics of each approach. This study has shown that the linear re-
sponses produced by both methods lead to ROMs that give very similar results even when
variable=�xed switch issues are present. Either method can be used to derive ROMs, which
give acceptable performance over a particular frequency range. ROMs produced by either
method provide greater computational e�ciency compared to full-order models for aeroelastic
investigations.
The following points should, however, be considered when selecting and implementing

either approach. The �rst approach involving linearizing the CFD code requires fewer pulse
response calculations to be performed and is robust in terms of amplitude selection. The
second approach, that approximates the linear pulse response as the linear portion of the
non-linear response of the full non-linear code, requires twice as many pulse response cal-
culations; however the need to linearize the code is avoided. In this latter case, it has been
shown that care must be taken in selecting the pulse amplitudes used to extract the linear
response. If large pulses are used the non-linear e�ects in the code can become so big that
the assumptions leading to the formula for the linear response are no longer valid. This sit-
uation may arise even for relatively small motions when a shock is present. If small pulses
are used then the small size of the responses may lead to problems with rounding error.
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from non-linear code using variable switch.
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Figure 26. Lift perturbation for linear pitch oscillations, M =0:7—ROMs
from non-linear code using �xed switch.
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Figure 27. Pitch moment perturbation for linear pitch oscillations, M =0:7—ROMs
from non-linear code using variable switch.
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Figure 28. Hinge moment perturbation for linear pitch oscillations, M =0:7—ROMs
from non-linear code using variable switch.
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Figure 29. Lift perturbation for linear pitch oscillations, M =0:8—ROMs
from non-linear code using variable switch.
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Figure 30. Lift perturbation for linear pitch oscillations, M =0:8—ROMs
from non-linear code using �xed switch.
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Figure 31. Pitch moment perturbation for linear pitch oscillations, M =0:8—ROMs
from non-linear code using variable switch.
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Figure 32. Pitch moment perturbation for linear pitch oscillations, M =0:8—ROMs
from non-linear code using �xed switch.
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Figure 33. Hinge moment perturbation for linear pitch oscillations, M =0:8—ROMs
from non-linear code using variable switch.
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Figure 34. Hinge moment perturbation for linear pitch oscillations, M =0:8—ROMs
from non-linear code using �xed switch.
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Thus for any code some experimentation with pulse size will be necessary to ensure the
best amplitude is selected. For the CFD code used here, it has been demonstrated that �xing
the switch in the non-linear code, at its mean value, leads to greater robustness in ROM
generation.
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